Distill the theoretical minimum to
$${\displaystyle i\hbar {\frac {d}{dt}}\vert \Psi (t)\rangle ={\hat {H}}\vert \Psi (t)\rangle }$$
$${\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (\mathbf {r} ,t)=\left[{\frac {-\hbar ^{2}}{2m}}\nabla ^{2}+V(\mathbf {r} ,t)\right]\Psi (\mathbf {r} ,t)}$$
$ M^T = \begin{bmatrix}1&2&3\\0&-6&7\end{bmatrix}^{\mathrm {T} } = \begin{bmatrix}1&0\\2&-6\\3&7\end{bmatrix} $
$ {\mathbf {I} _{n}={\begin{bmatrix}1&0&\cdots &0\\0&1&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &1\end{bmatrix}}} $
M is unitary if its conjugate transpose $M^\dagger$ is also its inverse
$ M^{\dagger }M = MM^{\dagger } = I. $
If $M$ is a real number matrix
$ M^{T}M = MM^{T} = I. $
$ \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} $
$c_{ij}=a_{i1}b_{1j}+\cdots +a_{im}b_{mj}=\sum _{k=1}^{m}a_{ik}b_{kj}$
$$ \begin{bmatrix} \color{r}{a_{11}} & \color{r}{a_{12}} & \color{r}{a_{13}} & \color{r}{a_{14}} \\ \color{b}{a_{21}} & \color{b}{a_{22}} & \color{b}{a_{23}} & \color{b}{a_{24}} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ \end{bmatrix} \times \begin{bmatrix} \color{r}{b_{11}} & b_{12} & \color{b}{b_{13}} \\ \color{r}{b_{21}} & b_{22} & \color{b}{b_{23}} \\ \color{r}{b_{31}} & b_{32} & \color{b}{b_{33}} \\ \color{r}{b_{41}} & b_{42} & \color{b}{b_{43}} \\ \end{bmatrix} = \begin{bmatrix} \color{r}{c_{11}} & c_{12} & c_{13} \\ c_{21} & c_{22} & \color{b}{c_{23}} \\ \end{bmatrix} $$
$ \color{r}{ c_{11}= a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} } $
$ \color{b}{ c_{23}= a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33} + a_{24}b_{43} } $
$ \begin{bmatrix} \color{r}{a_{11}} & a_{12} \\ a_{21} & a_{22} \\ \end{bmatrix} \otimes \color{r}{ \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix} } \color{d} = { \begin{bmatrix} \color{r} a_{11}{ \begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix}} & \color{d} a_{12}{\begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix}} \\ & \\ a_{21}{\begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix}} & a_{22}{\begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22} \\ \end{bmatrix}} \\ \end{bmatrix}} $
$ = { \begin{bmatrix} \color{r} a_{11}b_{11} & \color{r} a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ \color{r} a_{11}b_{21} & \color{r} a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \\ \end{bmatrix} }$
$ \begin{bmatrix} \color{r} a_{11} \\ a_{21} \\ \end{bmatrix} \otimes \color{r} \begin{bmatrix} b_{11} \\ b_{21} \\ \end{bmatrix} \color{d} = \begin{bmatrix} \color{r} a_{11} {\begin{bmatrix} b_{11} \\ b_{21} \\ \end{bmatrix}} \\ \color{d} a_{21} {\begin{bmatrix} b_{11} \\ b_{21} \\ \end{bmatrix}}\\ \end{bmatrix} = \begin{bmatrix} \color{r} a_{11}b_{11} \\ \color{r} a_{11}b_{21} \\ a_{21}b_{11} \\ a_{21}b_{21} \\ \end{bmatrix} $
"Regular computer bit is either a 1 or a 0, on or off. A quantum state can be much more complex than that, because as we know things can be both particle and wave at the same times and the uncertainty around quantum states allows us to encode more information into a much smaller computer."Justin Trudeu
Two states: $heads$ or $tails$
$P_{heads} = \frac{1}{2}$, $P_{tails} = \frac{1}{2}$
$P_{heads} + P_{tails} = 1$
$toss = \begin{cases} heads, & \text{50% of the time} \\[2ex] tails, & \text{50% of the time} \end{cases}$
Two states: $\ket{heads}$ or $\ket{tails}$
$P_{\ket{heads}} = \frac{1}{2}$, $P_{\ket{tails}} = \frac{1}{2}$
$P_{\ket{heads}} + P_{\ket{tails}} = 1$
$M(\ket{toss}) = \begin{cases} \ket{heads}, & \text{50% of the time} \\[2ex] \ket{tails}, & \text{50% of the time} \end{cases}$
$\ket{toss} = \overset{?}{P_\ket{heads}}\ket{heads} + \overset{?}{P_\ket{tails}}\ket{tails}$
Coin | Qucoin | |
---|---|---|
States | $heads, tails$ | $\ket{heads}, \ket{tails}$ |
Toss | ignored | essential part |
Result | look at | measure |
two-state quantum-mechanical system
$ \ket{\psi} = \color{b}\alpha\color{d} \ket{0} + \color{r}\beta\color{d} \ket{1} = \begin{bmatrix} \color{b}\alpha \\ \color{r}\beta \\ \end{bmatrix} $ $ = \begin{bmatrix} \color{b}\pm\sqrt{P_{\ket{0}}} \\ \color{r}\pm\sqrt{P_{\ket{1}}} \\ \end{bmatrix} $
$ \lvert\alpha\rvert^2 = P_{\ket{0}}, \lvert\beta\rvert^2 = P_{\ket{1}} $
$ \lvert\alpha\rvert^2 + \lvert\beta\rvert^2 = 1 $
$ \ket{toss} = \begin{bmatrix} \pm\sqrt{P_{\ket{heads}}} \\ \pm\sqrt{P_{\ket{tails}}} \\ \end{bmatrix} = \begin{bmatrix} \pm\sqrt{\frac{1}{2}} \\ \pm\sqrt{\frac{1}{2}} \\ \end{bmatrix} $
$$ \ket{00} = \ket{0} \otimes \ket{0} = \begin{bmatrix} 1 \\ 0 \\ \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \\ \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \end{bmatrix} $$
$$ \ket{10} = \ket{1} \otimes \ket{0} = \begin{bmatrix} 0 \\ 1 \\ \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \end{bmatrix} $$
Performs a logical operation on one or more binary inputs and produces a single binary output
A | B | A & B |
---|---|---|
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Deutsch’s algorithm determines whether
$f:\{0,1\}\rightarrow \{0,1\}$
is balanced or constant.
Input | Function | |||
---|---|---|---|---|
Constant | Constant | Balanced | Balanced | |
$x$ | $f(x) = 0$ | $f(x) = 1$ | $f(x) = 0 \oplus x$ | $f(x) = 1 \oplus x$ |
$0$ | $0$ | $1$ | $0$ | $1$ |
$1$ | $0$ | $1$ | $1$ | $0$ |
$$ U_f\ket{0} = \begin{bmatrix} 0 & 0\\ 1 & 1\\ \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} $$
$$ U_f\ket{1} = \begin{bmatrix} 0 & 0\\ 1 & 1\\ \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} $$
$$ \begin{align} U_f U_{f}^T & = \begin{bmatrix} 0 & 0\\ 1 & 1\\ \end{bmatrix} \begin{bmatrix} 0 & 1\\ 0 & 1\\ \end{bmatrix} \\ & = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \end{bmatrix} \neq I \\ \end{align} $$
$\ket{\psi_3} = \frac{1}{2} \bigl( \ket{0}$ $\ket{f(0)}$ $- \ket{0}$ $\ket{1 \oplus f(0)}$ $+ \ket{1}$ $\ket{f(0)}$ $- \ket{1}$ $\ket{1 \oplus f(0)}$ $ \bigr) $
$ = \frac{1}{2} \Bigl[ $ $\bigl(\ket{0} + \ket{1}\bigr)$ $\otimes \color{r}\ket{f(0)}\color{d} -$ $\bigl(\ket{0} + \ket{1}\bigr)$ $ \otimes \color{b}\ket{1 \oplus f(0)}\color{d} \Bigr] $
$= \frac{1}{2} \Bigl[ \color{g}\bigl( \ket{0} + \ket{1} \bigr) \color{d} \otimes \bigl( \color{r}\ket{f(0)}\color{d} - \color{b}\ket{1 \oplus f(0)}\color{d} \bigr) \Bigr] $
$= \frac{1}{\sqrt{2}} \ket{+} \otimes \bigl(\color{r}\ket{f(0)}\color{d} - \color{b}\ket{1 \oplus f(0)}\color{d}\bigr)$
$ \ket{\psi_3} = \frac{1}{2} \bigl( \ket{0} $$\ket{f(0)}$$ - \ket{0} $$\ket{f(1)}$$ + \ket{1} $$\ket{f(1)}$$ - \ket{1} $$\ket{f(0)}$$ \bigr) $
$ = \frac{1}{2} \Bigl[ $$\bigl(\ket{0} - \ket{1}\bigr)$$ \otimes \color{r}\ket{f(0)}\color{d} - $$\bigl(\ket{0} - \ket{1}\bigr)$$ \otimes \color{b}\ket{f(1)}\color{d} \Bigr] $
$ = \frac{1}{2} \Bigl[ \color{g} \bigl( \ket{0} - \ket{1} \bigr) \color{d} \otimes \bigl( \color{r}\ket{f(0)}\color{d} - \color{b}\ket{f(1)}\color{d} \bigr) \Bigr] $
$ = \frac{1}{\sqrt{2}} \color{g}\ket{-}\color{d} \otimes \bigl( \color{r}\ket{f(0)}\color{d} - \color{b}\ket{f(1)}\color{d} \bigr) $
Constant:
$ \ket{\psi_4} = \frac{1}{\sqrt{2}} $$\ket{0}$$ \otimes (\ket{f(0)\rangle - |1 \oplus f(0)}) $
Balanced:
$ \ket{\psi_4} = \frac{1}{\sqrt{2}} $$\ket{1}$$ \otimes (\ket{f(0)\rangle - |f(1)}) $
Approach | # of Queries |
---|---|
Digital | $2^{(n-1)} + 1$ |
Quantum | $1$ |